服务热线:

栏目导航
重点案例
联系我们
服务热线
电话:
邮箱:
地址:
当前位置:官网首页 > 新闻动态 > 行业动态 >
骨关节角度数字化测量与功能评估系统
作者: 发布日期:2019-09-24

目前有关骨关节疾病的诊断与功能评估大都基于医生临床查体、医学影像成像技术,通过分析MRI、CT、X线检查结果,根据经验对病情做出大致判断与分析,制定相应救治方案,并以此作为后期康复指导的依据,总体来说以医生的主观判断与评价为基础,缺乏对病人客观、精确的功能参数分析[1]。另外,现有医学影像设备有辐射且价格相对昂贵,不适合长期康复治疗的效果评估与药物指导。

本文将Kinect应用于骨关节空间角度的实时测量之中建立了骨关节空间角度数字化评估系统,并讨论了测量中的骨关节空间角度测量、功能分类评估等关键算法。实验证明3D实感摄像技术应用于骨关节空间角度测量与功能评估领域,在保证数字化测量要求的同时,可使系统具有客观功能评价、非接触、适应能力强、快速高效、准确、操作简便和成本低等特点。

图1为骨关节空间角度数字化评估系统框图,主要由Kinect骨关节数据采集、骨关节空间角度计算、骨关节功能分类评估等组成。系统基于Unity开发平台,利用体感设备Kinect进行深度数据采集;实时计算关节点空间角度并以数字化方式在界面上显示;同时通过数据分析与对比,完成骨关节空间角度数字化评估工作。

2 系统实现

基于Kinect的骨关节数据采集过程包括人物控制与骨骼点的绑定、骨架系统生成及关节点坐标表示。

为了控制系统场景中人物角色的移动,需要添加两个人物控制器分别对应于人物场景模型和人物骨架模型。其中,人物场景模型由一系列分别代表头部、肩部、手等人体部位的20个关节点组成。人物骨架模型对应Kinect控制的模型,控制场景中的角色的移动。

通过人物控制与骨骼点的绑定,可实现模型与人物的同步,也可以间接地获取关节点的三维坐标。识别出20个关节点位置,可以生成相应的骨架系统。

2.2 骨关节空间角度计算

计算A与相邻两点B、C组成的空间向量:

功能分类算法很多,常用的如K-medoids[6]、CLARANS[7]、K-means[8]等。考虑到骨关节功能庞大的数据量,系统采用更适合大数据集分析的K-means聚类算法,首先对正常的骨关节数据进行分析,得出标准的数据范围[9],再以正常的数据范围为分析比对的标准,对不同关节状况的骨关节角度数据进行收集整理。

系统采用误差平方和作为目标函数,即误差准则函数,具体定义如式所示:

式中,E表示对应类别的误差平方和;k为聚类类别数;n表示类别j的样本数量;xi表示类别j的某一样本数值;zj表示类别j的均值结果;d为数据xi和zj的偏差平方和,即2值。最后将k个类别的误差平方和相加即为总体误差平方和E。

3 系统实验与结果

利用骨关节空间角度测量方法,实测66例健康骨关节角度数据。通过对骨关节活动状态的分析,确定正常人群关节角度屈伸范围,如表1所示。它们可以作为后期正常样本的功能分类标准。

在66例健康骨关节屈伸数据分析基础上,增加测试数据至152例,通过聚类程序分析这152例数据。图4所示为以左膝关节为代表的聚类结果,其中横轴为伸展角度,纵轴为屈曲角度,数据被分为三类,分别是正常的一类、屈伸角度不足的一类、伸展角度不足的一类。

添加需要归类的新样本数据,会在分类基础上进行归类判定,如图4中以 □ 号表示参与归类的新的测量数据。

对下肢每一个关节测试并记录正常、欠屈和欠伸3种情况下各10组数据,一共30组数据,在聚类结果数据中输入测试的数据,完成对数据的归类,验证测试结果如表3所示。

表3中Ai~Ii分别为各个关节角度数据的测试结果情况,其中i={1,2,3,4,5,6}分别对应了左髋关节、右髋关节、左膝关节、右膝关节、左踝关节、右踝关节的数据测试结果,如A1~I1代表的是左髋关节的数据测试结果。结果表明10个伸展困难的样本中,有7个被正确归类,2个被错误地归类到正常,1个被错误地归类到屈曲困难;10个正常的测试样本中,有9个被正确归类,1个被错误地归类到屈曲困难;10个屈曲困难的测试样本完全正确归类于屈曲困难类。

3.3 系统测试

4 结论



Copyright © 2018 888国际集团888国际集团-凯发888 All Rights Reserved备案号:
电话:邮箱:
地址:技术支持:
888国际集团-凯发888